Verifica di Fisica 1^aB Liceo Scientifico 9/03/2013

Nome e cognome

Punteggio base: 2,0/10.

Esercizio 1. (2,0 Punti complessivi) Lo spessore di un vetrino viene misurato cinquanta volte; la tabella seguente indica le misure effettuate.

spessore (mm)	5,23	5,24	5,25	5,26	5,27	5,28	5,29	5,30
n. di volte	2	2	7	10	12	6	5	6

- a) Calcola la media dei valori misurati. (1,0 Punti)
- b) Calcola l'errore statistico (scarto quadratico medio). (1,0 Punti)

Esercizio 2. (2,0 Punti complessivi) La misura diretta di due lunghezze x e y ha dato rispettivamente i valori

$$x = 3, 2 \text{ cm} \pm 0, 2 \text{ cm}$$
 e $y = 4, 6 \text{ cm} \pm 0, 2 \text{ cm}$.

Determina (0,5 Punti per ogni richiesta):

a)
$$x + y$$
; b) $y - x$; c) $x \cdot y$; d) $\sqrt{x \cdot y}$.

Esercizio 3. (1,0 Punti) In un cilindro graduato contenente acqua viene completamente immersa una statuetta di massa $(26,8\pm0,2)$ g. Sapendo che il <u>diametro</u> del cilindro è pari a $(3,0\pm0,2)$ cm e che il livello dell'acqua si innalza di $(0,8\pm0,1)$ cm, qual è la densità della sostanza di cui è fatta la statuetta?

Esercizio 4. (1,0 Punti) Pierino sta misurando il periodo delle piccole oscillazioni di un pendolo di lunghezza $\ell=(45\pm1)$ cm. Dopo varie misure conclude che il periodo del pendolo è $T=(1,35\pm0,05)$ s. Come riuscirà a determinare l'accelerazione di gravità terrestre?

Tieni presente che la formula che lega il periodo T con la lunghezza ℓ del pendolo e l'accelerazione di gravità g è $T=2\pi\sqrt{\frac{\ell}{q}}$. (Suggerimento: ricava g dall'ultima formula)

Esercizio 5. (1,0 Punti) Il signor Fisico sta facendo un esperimento lasciando cadere delle palle di piombo dalla sommità della Torre di Pisa, ovvero da un'altezza di (56 ± 1) m.

I suoi dati sperimentali indicano che il tempo di caduta è $(3,4\pm0,1)\,\mathrm{s}.$

Se $h = \frac{1}{2} g t^2$ è la formula che lega il tempo di caduta t con l'altezza h e l'accelerazione di gravità g, determina g. (Suggerimento: ricava g dall'ultima formula)

Esercizio 6. (1,0 Punti) Si vuole determinare l'accelerazione di un'auto sportiva sapendo che, partendo da ferma, raggiunge la velocità $v=(30\pm1)\frac{m}{s}$ percorrendo uno spazio $d=(68\pm2)$ m.

Si tenga conto che la formula che lega la velocità v con l'accelerazione a e lo spazio d è $v^2 = 2 a d$. (Suggerimento: ricava a dall'ultima formula)

Punteggio esercizi:

(la seguente tabella deve essere riempita dal docente)

1	2	3	4	5	6

Liceo "F. Buonarroti" Pisa - Prof. Francesco Daddi

Verifica di Fisica 1^aE Liceo Scientifico - Scienze Applicate 19/11/2014

Nome e cognome	

Punteggio base: 2,5/10.

Esercizio 1. (2,0 punti complessivi) Lo spessore di un vetrino viene misurato 27 volte; la tabella seguente indica le misure effettuate.

spessore (mm)	4,52	4,53	4,54	4,55	4,56
n. di volte	5	4	7	8	3

- a) Calcola la media dei valori misurati. (0,5 punti)
- b) Calcola l'errore statistico (scarto quadratico medio). (1,5 punti)

Esercizio 2. (1,0/10) Date le misure $a = (7, 6 \pm 0, 3)$ cm e $b = (2, 4 \pm 0, 2)$ cm, si determini a + b e a - b.

Esercizio 3. (1,5/10) Una sfera ha raggio $R = (2,34 \pm 0,01)$ cm. Si determini il suo volume.

Esercizio 4. (1,5/10) In un cilindro graduato contenente acqua viene completamente immersa una statuetta di massa $M=(28,3\pm0,1)$ g. Sapendo che il volume spostato è uguale a $V=(9,2\pm0,2)$ cm³, determina la densità della statuetta.

Esercizio 5. (1,5/10) Un cilindro ha diametro $D=(6,8\pm0,2)$ cm e altezza $h=(8,5\pm0,2)$ cm. Si determini il suo volume e la sua superficie laterale.

Liceo "F. Buonarroti" Pisa - Prof. Francesco Daddi

Verifica di Fisica 1^aE Liceo Scientifico - Scienze Applicate 19/11/2014

Nome e cognome	

Punteggio base: 2,5/10.

Esercizio 1. (2,0 punti complessivi) Lo spessore di un vetrino viene misurato 27 volte; la tabella seguente indica le misure effettuate.

spessore (mm)	3,63	3,64	3,65	3,66	3,67
n. di volte	5	4	7	8	3

- a) Calcola la media dei valori misurati. (0,5 punti)
- b) Calcola l'errore statistico (scarto quadratico medio). (1,5 punti)

Esercizio 2. (1,0/10) Date le misure $a = (3, 2 \pm 0, 5)$ cm e $b = (4, 8 \pm 0, 2)$ cm, si determini a + b e b - a.

Esercizio 3. (1,5/10) Una sfera ha raggio $R = (2,74 \pm 0,02)$ cm. Si determini il suo volume.

Esercizio 4. (1,5/10) In un cilindro graduato contenente acqua viene completamente immersa una statuetta di massa $M=(25,2\pm0,1)$ g. Sapendo che il volume spostato è uguale a $V=(9,6\pm0,2)$ cm³, determina la densità della statuetta.

Esercizio 5. (1,5/10) Un cilindro ha diametro $D=(6,2\pm0,2)$ cm e altezza $h=(8,3\pm0,2)$ cm. Si determini il suo volume e la sua superficie laterale.

Verifica di Fisica 1^aB Liceo Scientifico 26/11/2014

Nome e cognome

Punteggio base: 2,5/10.

Esercizio 1. (2,0 punti complessivi) Lo spessore di un vetrino viene misurato 35 volte; la tabella seguente indica le misure effettuate.

spessore (mm)	9,32	9,33	9,34	9,35	9,36	9,37
n. di volte	6	8	9	6	4	2

- a) Calcola la media dei valori misurati. (0,5 punti)
- b) Calcola l'errore statistico (scarto quadratico medio). (1,5 punti)

Esercizio 2. (1,0/10) Date le misure $a = (4, 1 \pm 0, 2)$ cm e $b = (2, 4 \pm 0, 1)$ cm, si determini a + b e a - b.

Esercizio 3. (1,5/10) Lo spigolo di un cubo è $\ell = (2,63 \pm 0,01)$ cm. Si determini il volume del cubo.

Esercizio 4. (1,5/10) Un'auto sportiva sta percorrendo una curva di raggio r ad una velocità costante v= $(35, 4 \pm 0, 1)$ m/s. Con uno strumento a bordo viene rilevata un'accelerazione $a = (9, 40 \pm 0, 05)$ m/s².

Si determini il raggio r dell'auto sapendo che $r = \frac{v^2}{a}$.

Esercizio 5. (1,5/10) Una calotta sferica è ciascuna delle due regioni in cui una superficie sferica viene divisa da un piano secante. La circonferenza lungo la quale il piano interseca la superficie della sfera è detta base della calotta sferica e il segmento di perpendicolare che va dal centro della base alla calotta è detto altezza della calotta.

Si sa che il volume della calotta è $V = \pi h^2 \left(r - \frac{h}{3} \right)$.

Se $r=(8,60\pm0,02)$ cm e $h=(5,34\pm0,06)$ cm, si determini il volume V.

Liceo "F. Buonarroti" Pisa - Prof. Francesco Daddi

Verifica di Fisica 1^aB Liceo Scientifico 26/11/2014

Nome e cognome

Punteggio base: 2,5/10.

Esercizio 1. (2,0 punti complessivi) Lo spessore di un vetrino viene misurato 35 volte; la tabella seguente indica le misure effettuate.

spessore (mm)	6,22	6,23	6,24	6,25	6, 26	6,27
n. di volte	6	8	9	6	4	2

- a) Calcola la media dei valori misurati. (0,5 punti)
- b) Calcola l'errore statistico (scarto quadratico medio). (1,5 punti)

Esercizio 2. (1,0/10) Date le misure $a = (6, 3 \pm 0, 2)$ cm e $b = (2, 8 \pm 0, 1)$ cm, si determini a + b e a - b.

Esercizio 3. (1,5/10) Lo spigolo di un cubo è $\ell = (2,45\pm0,01)$ cm. Si determini il volume del cubo.

Esercizio 4. (1,5/10) Un'auto sportiva sta percorrendo una curva di raggio r ad una velocità costante v= $(41,6\pm0,1)$ m/s. Con uno strumento a bordo viene rilevata un'accelerazione $a=(9,65\pm0,05)$ m/s².

Si determini il raggio r dell'auto sapendo che $r=\frac{v^2}{a}$.

Esercizio 5. (1,5/10) Una calotta sferica è ciascuna delle due regioni in cui una superficie sferica viene divisa da un piano secante. La circonferenza lungo la quale il piano interseca la superficie della sfera è detta base della calotta sferica e il segmento di perpendicolare che va dal centro della base alla calotta è detto altezza della calotta.

Si sa che il volume della calotta è $V = \pi h^2 \left(r - \frac{h}{3}\right)$.

Se $r = (7, 16 \pm 0, 02)$ cm e $h = (2, 88 \pm 0, 06)$ cm, si determini il volume V.

Liceo "Carducci" Volterra - Prof. Francesco Daddi

Verifica di Fisica I^aA Scientifico 23/01/2016

Punteggio di partenza: 2/10. I primi 5 esercizi valgono 0,8/10, gli ultimi 2 valgono 2,0/10.

Esercizio 3. Sapendo che la grandezza y è cubicamente proporzionale alla grandezza x, che cosa dobbiamo scrivere al

360 | 15435

Esercizio 4. Le misure di due grandezze x e y fra loro dipendenti sono espresse dai seguenti valori numerici, nelle

0.95 1.85 6.80

Sapendo che tra x ed y vi è una dipendenza lineare, che cosa dobbiamo mettere al posto dei puntini nelle precedente

A 8 B 11 C 13 D 14 E 16 F 18 G 19 H 21 I 26 L 28 M 34 N N. P.

A $(1,7\pm0,2)$ cm B $(1,7\pm0,4)$ cm C $(-1,7\pm0,2)$ cm D $(6,5\pm0,4)$ cm E N. P.

F 31 G 33 H 35 I 37 L 38 M 41 N N. P.

E 29

Esercizio 5. Date le misure $a=(4,1\pm0,3)$ cm e $b=(2,4\pm0,1)$ cm, si determini a-b.

Con uno strumento a bordo viene rilevata un'accelerazione $a = (9, 40 \pm 0, 05)$ m/s².

Si determini il raggio r dell'auto sapendo che $a=\frac{v^2}{r}$. **Esercizio 7.** Una calotta sferica è ciascuna delle due regioni in cui una superficie sferica viene divisa da un piano secante. La circonferenza lungo la quale il piano interseca la superficie della sfera è detta *base* della calotta sferica e il segmento di perpendicolare che va dal centro della base alla calotta è detto *altezza* della calotta.

Esercizio 6. Un'auto sportiva sta percorrendo una curva di raggio r ad una velocità costante $v=(35,4\pm0,1)$ m/s.

Si sa che il volume della calotta è $V=\pi\,h^2\left(r-\frac{h}{3}\right)$. Se $V=(970,2\pm0,5)~{\rm cm}^3$ e $h=(5,34\pm0,06)~{\rm cm}$, si determini r.

Nome e cognome

Esercizio 1. *x* e *y* sono *direttamente proporzionali* se:

Esercizio 2. y è quadraticamente proporzionale a x se:

posto dei puntini nella tabella sottostante?

appropriate unità di misura:

tabella?

 $\boxed{\mathbf{F}} x = Cy^2 \qquad \boxed{\mathbf{G}} y = Cx \qquad \boxed{\mathbf{H}} y^2x^3 = C \qquad \boxed{\mathbf{I}} \mathbf{N}. \mathbf{P}.$

Punteggio esercizi:

(la seguente tabella deve essere riempita dal docente)

_		-	
Primi 5	6	7	Voto

Verifica di Fisica 1^aC Liceo Scientifico 7 dicembre 2018

Nome e cognome		

Punteggio base: 2,0/10.

Esercizio 1. (2,0 Punti complessivi) Lo spessore di un vetrino viene misurato centocinquanta volte; la tabella seguente indica le misure effettuate.

spessore (mm)	3, 16	3,17	3, 18	3, 19
n. di volte	10	30	60	50

- a) Si calcoli la media dei valori misurati. (1,0 Punti)
- b) Si calcoli l'errore statistico (scarto quadratico medio). (1,0 Punti)

Esercizio 2. (2,0 Punti) Un corona circolare ha raggio interno $r = (3, 2 \pm 0, 1)$ m e raggio esterno $R = (4, 5 \pm 0, 1)$ m.

 \spadesuit Si determini la sua area A, utilizzando la formula $A = \pi(R+r)(R-r)$.

Esercizio 3. (2,0 Punti) Il signor Fisico sta facendo un esperimento lasciando cadere delle palline su un piano inclinato, di lunghezza $L=(5,83\pm0,01)\,\mathrm{m}$. I suoi dati sperimentali indicano che il tempo di caduta è $t=(4,3\pm0,2)\,\mathrm{s}$.

 \diamondsuit Se $L=\frac{1}{2}\,a\,t^2\,$ è la formula da utilizzare, si determini l'accelerazione a.

(Suggerimento: ricava a dall'ultima formula)

Esercizio 4. (2,0 Punti) Un corpo viene lanciato verso l'alto con velocità v e raggiunge l'altezza massima $h = (24, 0 \pm 0, 5)$ m.

 \heartsuit Sfruttando la formula $h = \frac{v^2}{2g}$, dove $g = (9, 8 \pm 0, 1)$ m/s², si determini v.

(Suggerimento: ricava v dall'ultima formula)

Punteggio esercizi:

(la seguente tabella deve essere riempita dal docente)

1	2	3	4