Istituto Superiore "XXV aprile" Pontedera - Prof. Francesco Daddi

Verifica di Matematica 4^aC Liceo Scientifico - 03/03/2014

Nome e cognome			
----------------	--	--	--

Punteggio di partenza: 1,0/10. Tutti gli esercizi valgono 1,5/10. Lo studente deve svolgere i primi cinque esercizi e uno a scelta tra il n. 6 e il n. 7.

Esercizio 1. Si determinino le soluzioni complesse dell'equazione $z^5 + z^4 + 81z + 81 = 0$.

Esercizio 2. Assegnata la retta $r: \begin{cases} x-y+z-2=0 \\ x-y-2z-1=0 \end{cases}$ si scriva l'equazione del fascio di piani contenenti r e, tra di essi, si determi

- a) quello perpendicolare al piano $\alpha: x 5y + 6z 3 = 0$;
- b) quello parallelo alla retta s: $\begin{cases} x = 4 + 6t \\ y = -13 + 3t ; \\ z = 19 + t \end{cases}$ c) quello perpendicolare alla retta u: $\begin{cases} x = 2 + 7t \\ y = -7t \\ z = 1 11t \end{cases}$

Esercizio 3. Assegnato il punto P(2, -2, 4) si determini:

- a) l'equazione della sfera avente centro in P e tangente al piano $\pi: x-2y+3z=4$;
- b) la proiezione ortogonale di P sulla retta r: $\begin{cases} x y = 2 \\ y + z = 0 \end{cases}$ e la distanza d(P, r).

Esercizio 4. Sono assegnati i punti A(1,1,0) e B(0,1,-1). Si dimostri che il luogo geometrico dei punti P tali che $d(P,A) = 2 \cdot d(P,B)$ è una sfera S, determinandone la misura del raggio e le coordinate del centro C; si verifichi infine che C è allineato con i punti A e B.

Esercizio 5. Si determinino le equazioni dei piani paralleli al piano $\pi: x-2y+2z-2014=0$ e che intersecano la sfera $S: x^2 + y^2 + z^2 - 10y + 6z + 9 = 0$ ciascuno in una circonferenza avente raggio r = 3.

Esercizio 6. Sono assegnati i punti A(1,0,2), B(2,1,0), C(0,0,3).

- a) Si determini il piano passante per i tre punti.
- b) Si determini il centro e il raggio della circonferenza passante per i tre punti.

Esercizio 7. Si determini la retta passante per A(0,1,-1), parallela al piano $\pi: x-y-z-8=0$

ed incidente la retta
$$r$$
:
$$\begin{cases} x = 1 + t \\ y = -t \\ z = -2 + t \end{cases}$$