Esercizi di riepilogo - $3^a AL - 3^a BU - 13/05/2019$

Esercizio 1. Risolvi l'equazione $(x-1)^2 = (3x+1) \cdot (x-2) - 2x$ [R. $x_1 = -\frac{1}{2}$; $x_2 = 3$]

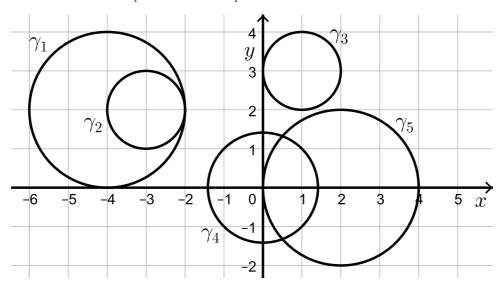
Esercizio 2. Risolvi l'equazione
$$\frac{x^2 + 5x}{x^2 - 4x + 3} = \frac{4 - 3x}{x - 3} - 16$$
 [R. $x_1 = \frac{13}{10}$; $x_2 = 2$]

Esercizio 3. Risolvi la disequazione
$$\frac{5x-2}{x^2-6x+8} \le 1 - \frac{x+3}{x-2}$$
 R. $\{x < 2\} \cup \left\{\frac{11}{5} \le x < 4\right\}$

Esercizio 4. Disegna nel piano cartesiano la parabola di equazione $y=\frac{1}{8}x^2-x-3$, individuandone inoltre vertice, fuoco e direttrice. [R. V(4,-5), F(4,-3), d:y=-7]

Esercizio 5. Disegna nel piano cartesiano la parabola di equazione $y = -\frac{1}{4}x^2 + x + 1$, individuandone inoltre vertice, fuoco e direttrice. [R. V(2,2), F(2,1), d:y=3]

Esercizio 6. Trova b in modo che la parabola di equazione $y = \frac{1}{2}x^2 + bx + 5$ abbia fuoco F di ascissa $x_F = 3$. [R. b = -3]


Esercizio 7. Trova b, c in modo che la parabola di equazione $y = -x^2 + bx + c$ abbia vertice in V(3,13). [R. b = 6, c = 4]

Esercizio 8. Disegna nello stesso piano cartesiano le circonferenze di equazioni

$$x^2 + y^2 - 4x + 2y - 31 = 0$$
 , $x^2 + y^2 - 10x - 4y + 20 = 0$.

Esercizio 9. Si determini l'equazione della circonferenza di centro C(0,4) e passante per A(2,1). Il punto B(-3,5) si trova all'interno oppure all'esterno? [R. $x^2 + (y-4)^2 = 13$; il punto B è all'interno.]

Esercizio 10. Si determinino le equazioni delle cinque circonferenze.

Esercizio 11. Si determini l'equazione della circonferenza avente centro in C(4, -3) e tangente all'asse delle x. Suggerimento: guarda bene la figura! [R. $(x-4)^2 + (y+3)^2 = 9$]

Esercizio 12. Quale delle seguenti è l'equazione di una circonferenza reale?

$$x^{2} + y^{2} - 4x + 6y + 15 = 0$$
 , $x^{2} + y^{2} - x + 3y = -20$
 $x^{2} + y^{2} - 6x + 5y + 11 = 0$, $x^{2} + y^{2} - 8x + 2y = -19$

Esercizio 13. Data la circonferenza di equazione $x^2+y^2+2x-6y+c=0$, si determini il valore del parametro c in modo che abbia raggio $r=\sqrt{6}$. [R. c=4]

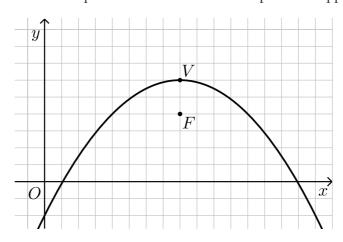
Esercizio 14. Dopo aver determinato i parametri a, b in modo che la circonferenza $x^2 + y^2 + ax + by + 2 = 0$ abbia centro nel punto C(4, -2), si determini l'equazione della retta tangente nel suo punto A(1, -5).

[R.
$$a = -8$$
; $b = 4$; la tangente nel punto A ha equazione $y = -x - 4$]

Esercizio 15. Si determini l'equazione della circonferenza, sapendo che il segmento di estremi A(1,5) e B(3,1) è uno dei suoi diametri. Si determini inoltre l'equazione della retta tangente in B.

[R.
$$(x-2)^2 + (y-3)^2 = 5$$
; la tangente nel punto B ha equazione $y = \frac{1}{2}x - \frac{1}{2}$]

Verifica di Matematica 22 maggio 2019 3°BU


Nome e cognome

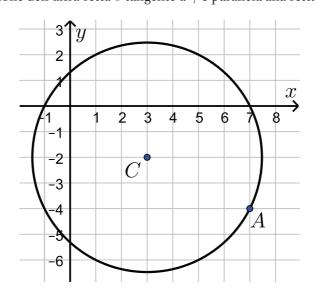
Punteggio di partenza: 2/10.

Esercizio 1. [1,5 Punti] Si risolva l'equazione $\frac{1}{x} = 2x + 1$

Esercizio 2. [1,5 Punti] Si risolva la disequazione $\frac{x-1}{x+2} \le 2$

Esercizio 3. [1,0 Punti] Si determini l'equazione della direttrice della parabola rappresentata in figura

$$\boxed{ \textbf{I} \hspace{0.5em} y = 9 \hspace{0.5em} \boxed{ \textbf{J} \hspace{0.5em} y = 10 \hspace{0.5em} \boxed{ \textbf{K} \hspace{0.5em} y = 11 \hspace{0.5em} \boxed{ \textbf{L} \hspace{0.5em} y = 12 \hspace{0.5em} \boxed{ \textbf{M} \hspace{0.5em} x = 1 \hspace{0.5em} \boxed{ \textbf{N} \hspace{0.5em} x = 2 \hspace{0.5em} \boxed{ \textbf{O} \hspace{0.5em} x = 3 \hspace{0.5em} \boxed{ \textbf{P} \hspace{0.5em} x = 4 \hspace{0.5em} } }$$


$$\boxed{\mathbf{Q}} \ x = 5 \quad \boxed{\mathbf{R}} \ x = 6 \quad \boxed{\mathbf{S}} \ x = 7 \quad \boxed{\mathbf{T}} \ x = 8 \quad \boxed{\mathbf{U}} \ x = 9 \quad \boxed{\mathbf{V}} \ x = 10 \quad \boxed{\mathbf{W}} \ x = 11 \quad \boxed{\mathbf{X}} \ \mathbf{N}. \ \mathbf{P}.$$

Esercizio 4. [1,5 Punti] Disegna nel piano cartesiano, in modo sufficientemente accurato, la circonferenza di equazione

$$x^2 + y^2 + 6x - 4y - 12 = 0$$
.

Esercizio 5. [2,5 Punti] a) Si determini l'equazione della circonferenza γ rappresentata in figura.

- b) Successivamente si scriva l'equazione della retta t tangente a γ nel suo punto A.
- c) [\spadesuit] Si scriva infine l'equazione dell'altra retta s tangente a γ e parallela alla retta t.

Liceo "E. Fermi" Cecina - Prof. Francesco Daddi

Verifica di Matematica 3^aAL 27 maggio 2019

Nome e cognome

Punteggio di partenza: 2/10.

La valutazione terrà conto delle motivazioni fornite e della coerenza dell'intero svolgimento.

Esercizio 1. [1,5 Punti] Si risolva l'equazione $\frac{2}{x-1} = -2 - x$

Esercizio 2. [2,0 Punti] Si risolva la disequazione $\frac{1}{x+2} \ge \frac{3x}{x^2+4x+4}$

Esercizio 3. [0,5 Punti] Si consideri nel piano cartesiano la parabola di equazione

$$y = -\frac{1}{4}x^2 + \frac{1}{2}x + \frac{7}{4}.$$

• Si determinino le coordinate del vertice, le coordinate del fuoco e l'equazione della direttrice.

Esercizio 4. [1,5 Punti] a) Si disegni nel piano cartesiano, in modo sufficientemente accurato, la circonferenza γ di equazione

$$x^2 + y^2 + 4x - 6y - 3 = 0.$$

b) Si determini l'equazione della circonferenza che ha lo stesso centro di γ e che risulta tangente all'asse delle x.

Esercizio 5. [0,5 Punti] a) Si determini l'equazione della circonferenza γ passante per i punti

$$P_1(-2,1)$$
, $P_2(-6,-5)$, $P_3(-6,1)$.

Suggerimento: guarda bene la situazione nel piano cartesiano.

Esercizio 6. [1,5 Punti] a) Si determini l'equazione della circonferenza γ di centro C(-3,-1) e passante per A(-4,-6).

b) Si determini l'equazione della retta tangente a γ nel suo punto A.

Esercizio 7. [0,5 Punti. Attenzione: è richiesto lo svolgimento sul foglio]

Si considerino i punti A(4,3) e B(-2,7). Quale delle seguenti circonferenze ha per diametro il segmento di estremi A e B?

$$\boxed{ \textbf{D} } x^2 + y^2 + 2x - 10y - 13 = 0 \quad \boxed{ \textbf{E} } x^2 + y^2 - 2x + 10y + 13 = 0 \quad \boxed{ \textbf{F} } x^2 + y^2 - 2x + 10y - 13 = 0$$

G
$$x^2 + y^2 - 2x - 10y + 13 = 0$$
 H $x^2 + y^2 - 2x - 10y - 13 = 0$ I N. P.

Liceo "E. Fermi" Cecina - Prof. Francesco Daddi

Verifica di Matematica 3^aAL - assenti del 27 maggio 2019

Nome e cognome

Punteggio di partenza: 2/10.

La valutazione terrà conto delle motivazioni fornite e della coerenza dell'intero svolgimento.

Esercizio 1. [1,5 punti] Si risolva l'equazione $-\frac{x-3}{9-x^2}=\frac{4}{x^2}$

Esercizio 2. [2,0 punti] Si risolva la disequazione $\frac{1}{x^2} \geq \frac{4}{x^2 - 10 \, x + 25}$

Esercizio 3. [0,5 punti] Si consideri nel piano cartesiano la parabola di equazione

$$y = -\frac{3}{4}x^2 - \frac{5}{4}x - \frac{1}{2}.$$

• Si determinino le coordinate del vertice, le coordinate del fuoco e l'equazione della direttrice.

Esercizio 4. [0,5 punti] Si determini l'equazione della circonferenza γ che ha come diametro il segmento avente come estremi i punti A(-3,-7) e B(-5,-3).

Esercizio 5. [1,5 punti tot.] a) [0,75 p.] Si disegnino, in modo accurato e nello stesso piano cartesiano, le due circonferenze

$$\gamma_1: x^2 + y^2 - 4x - 6y - 12 = 0$$
, $\gamma_2: x^2 + y^2 - 18x - 6y + 86 = 0$.

b) [0,75 p.] Basandosi esclusivamente sul disegno, si verifichi che esiste un solo punto A comune alle due circonferenze, di cui si richiedono le coordinate cartesiane. Qual è l'equazione della retta tangente comune alle due circonferenze in A?

Esercizio 6. [1,0 punti tot.] a) [0,5 p.] Si determinino le equazioni delle circonferenze di raggio 5 e tangenti ad entrambi gli assi cartesiani. Suggerimento: fare il disegno.

b) [0,5 p.] Considerata tra di esse la circonferenza contenuta nel primo quadrante (cioè ascissa e ordinata ≥ 0), si determini l'equazione della retta tangente nel suo punto P(1,2).

Esercizio 7. [1,0 punti tot.] a) [0,5 p.] Si determini il valore del parametro reale c in modo che la circonferenza $\gamma_1: x^2 + y^2 - 6x + 2y + c = 0$ abbia il diametro di misura $12\sqrt{2}$.

(*a scelta*) b1) [0,5 p.] Quali sono le coordinate dei punti di intersezione della circonferenza γ_1 con gli assi cartesiani?

(*a scelta*) b2) [0,5 p.] Si determini l'equazione della circonferenza γ_2 , interna a γ_1 e con lo stesso centro, in modo che la corona circolare delimitata dalle due circonferenza abbia area uguale a 16π .